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Abstract—This paper aims to solve a real-life problem: the
bike-sharing management system arises the requirement of of-
fering the customers the accessibility of the bikes in different
bike-stations concerning the potential demands in every time-
slice. The prediction of needs is critical to the distribution of
the limited resources (bikes and empty slots to place the bikes)
and the management of the system. We propose addressing this
problem by using the regression model, which is trained by the
raw data collecting from the different sensors. Thanks to the wide
distribution of the edge devices, the machine learning algorithms,
and the advanced computing ability, we may incorporate the
intelligence to the database-related system. We will demonstrate
that the boosting gradient method as a predictor to forecast the
quantities of rentals and returns of bikes, outperforming the
other means, e.g., random forest, support vector machine, etc. It
reaches a promising result; the average accuracy reaches 75%.

I. INTRODUCTION

Bike-sharing is a world-scale project; it has been promoted

and implemented in many countries across different conti-

nents. It receives high popularity and attention due to the

richness of meaning behind it. It suggests a healthy, eco-

friendly lifestyle: alleviating the green-house emission by

reducing the usage of cars [1]; diverting the traffic flow that

highly burdened the load of the traditional public transporting

network [2]. BikeX is a Bike Sharing project implemented in

a metropolitan city with the population around 4 million (due

to the confidential business information we cannot point out

the project name). It is used for short trips in the place of

the public transport system. It offers a service that it is free

with the first thirty minutes to encourage the usage. Currently,

it has more than 270 available bike-stations, from where the

rental and return services can be offered, they are distributed

throughout the whole city, including the downtowns and the

outskirts with different density accordingly (bike station is

shown in figure 1).

The placement of bikes is challenging since the variant

geographical locations (e.g., center and suburb) and the various

time (e.g., rush hour, idle time) differentiate the number of

customers’ demands and the type of service (e.g., rent or

return). The issue mentioned above increases the difficulty of

the system management, which turns out two consequences:
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1) sometimes the requirement of customers are far away from

fulfilling, 2) the resources cannot be entirely used (resource

waste). For instance, the customers cannot find the available

bikes in the nearby station or cannot find the empty position

to return the bikes; some stations are fully mounted of bikes

while no rentals and returns occurred. The resource distribu-

tion bears the pain of efficiently and systematically positioning

the limited resources in response to the requirements [3], while

it is highly required to solve since it is directly related to the

expense of management. We suggest incorporating a foresight

function in the system that may envision the underlying needs

of the clients through the implementation of Machine Learning

techniques. The predictor is typically generated by gaining

the insight from the historical records sitting in the database.

While BikeX management system has a massive, integrated

database, which is jammed by different genres of data, e.g.,

customer profiles, log of bike usages and as well as climate

information from the external sensors. It complicated our

work as the different categories of data suffer from the data

variety and data producing velocity. We have to determine

the objective that is feasible under those constraints. After

the discussion of the database designer, we finally decided

the target as the prediction of the quantities separately for

rentals and returns at every hour in different stations. We

realize it through observing the records where a set of variables

related to the target and the actual quantities of rentals/returns

are collected. Alternatively, we may build a different setting,

where the activities of clients, present/absent at every hour in

the stations, may be classified. Then, the to-predict quantities

are obtained by summing the classification result (0/1). As

this method will ask for the grants from the clients, we do

not adopt it, though, it may be a strengthener to improve the

result.

II. RELATED WORK

In the following text, we will move from the introduction of

the project and determine the objective to present the machine

learning algorithms. The prediction is a supervised regression
problem [4] in the machine-learning lingo, namely it means

the variable that we try to predict are real value and data

samples used to train and build the model are input-output
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Fig. 1. An example: Bike Station where the clients may rent and return the
bikes.

paired. Many methods have been proved to be effective in

different applications correspondingly, e.g., linear regression

(with/without shrinkage) [5][6], support vector machine (SVM

[7]), decision tree(DT [8]). The linear regression attempts to

estimate the relationship between the set of input variables

and the output variables by automatically learning from a set

of training data. It gains its popularity due to its simpleness

and interpretability, the set of features are combined with

the different weights to determine the output finally. The

coefficients imply the significance of the corresponding fea-

tures if the weights are high indicating that the corresponding

variable is significant and vice verse. Notably, the preprocess

of re-scaling the variables is critical due to the nature of

linear regression model [9]. Furthermore, it also spawns some

variants, with the purpose to alleviate the over-fitting problem,

which means that a model describes the random errors in the

data instead of the relationship between variables. It happens

when the model is too complicated, some methods subject

the cost function to a constraint function of penalizing the

features, e.g., least absolute shrinkage and selection operator

(LASSO [10]). Usually, it works correctly when the features

are continuous numerical values, and the standardization is

implemented appropriately. SVM is another pleasurable ap-

proach; it may tolerate the noises to some extent by the use

of slack variables, which may bypass the over-fitting issue

since it often arouses from trying to fit all the data samples

including noises. Another favorite character is that SVM builds

the hyperplane and margin solely by a subset of the whole data

set, which may significantly liberate memory and computing

time. Additionally, the size of the subset may be adjustable

by the hyper-parameters. Admittedly, it also has its limitation,

the model has to come with the support vectors (the subset

of data set), and it fails when dealing with the sparse data in

some application ([11]), e.g., the recommender system. DT is

another category of methods, and it is generally constructed

from top to button, where the leaf nodes may predict the values

or do the classification. The internal nodes are represented by

the variables to generate the branches along with the break-

point values. The selections of the features are executed by

minimizing the sum of squared error between the predicted

value and actual value, with considering the whole dataset.

Thus, it suffers from over-fitting. Moreover, the mixture of

categorical and numerical values are acceptable, the data scale

and monotonic transformations are not necessary to apply to

tree-like methods. It is a fundamental method, based on which

a series of approaches are further developed and investigated.

Among the ensemble category, Random Forest (RF, [12]) is

a collection of trees, which are trained by a subset of data

samples and some features instead of all as decision tree

does. It attempts to solve the over-fit problems by reducing

the variance, more precisely, by averaging a set of trees.

These trees are fully-grown (low bias, high variance), they are

uncorrelated by the random generation fashion to maximize

the reduction in variance. However, the bias may not be

reduced during the process, the biases of initial trees have to

be as small as possible. Extreme random tree (ETR, [13]) is

another tree-based ensemble method, unlike RF that optimizes

the splitting node, it randomizes the cutting point. Therefore it

is computationally cheaper. In general, machine learning has

proven useful in a variety of different applications, including

many problems in computational biology [14], [15], [16], [17],

[18], [19], [20].

In this paper our contribution can be summarized as i)

converting a practical issue into a realizable machine-learning

model, ii) compare and find a method that fits the model

(predictor) best, iii) embed the predictor into the management

system. The paper is organized as follows: in the first section,

we present the background of this Bike-sharing project by

pointing out the problems and pinning down the objectives; in

the second section briefly introducing the related algorithm;

followed by presenting the gradient boosting method and

the dataset, subsequently, the result will be illustrated and

compared with the state-of-art techniques, and completing the

work with the conclusion.

III. MATERIAL AND METHOD

A. Database

Our work is carried out based on the real data set, and some

data points are abnormal, incomplete and even erroneous, e.g.,

the connecting problems between sensors equipped on the

stations and the server. Therefore, a purifying procedure is

required to implement when we extract the data from the

database. Note that all the information about the clients is

anonymous. The whole dataset contains the records of 276

stations, spanning from 2016 to 2017. The different positions

of the stations lead to the variant demands from the clients.

Some stations located in the center or close to the entrances of

public transport, where the service is highly required. Whereas,
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some others have few usages because they are lately built or

in the rural and developing area. As a result, The number of

records is also diverse. We remove the stations which contain

the number of records less 1000 since the information is

not enough to train the model. We split the data into two

parts, 70% for training, 30% for the validation. The average

number of data samples for training is 2100; for testing is

850. We selected the features that are promisingly related to

the objectives that we want to predict, describe as table I, and

the targets that we attempt to predict are shown in table II.

The first subset of features indicate the date and time, and

we split it into five variables: year, month, day, hour and

the day of the week. The second block of features reflect

the number of subscriptions, ”AnnualCustomerCount” is the

number of clients who subscript at least one year; whereas

the ”OccasionalCustomerCount” is the number of clients who

temporarily use the service. Subsequently, the four variables

represent the climate: temperature, precipitation, wind, and

humidity. The last subset indicates the status of the previous

hour by four foci: the number of rentals and returns occurred

in the precedent hour, the number of available bikes and empty

slots at the end of the precedent hour.

B. Feature Analysis

Before introducing the methods, we’d like to analyze the

features in the first place. We want to evaluate the relations

between them, i.e., how likely they are independent of each

other. It is studied by computing the Kendall correlation

[21] between pairs of variables. The heat-map of Kendall

correlations between features is shown in Figure 2. The heat-

map is symmetric, and the off-diagonal entries indicate the

correlation between two different variables. The Kendall cor-

relation ranges from -1 to 1 if the rank of the two variables are

perfectly agreed the correlation is one if they disagree the value

is -1 when the two variables are independent the correlation

is close to zero. As we can tell, they are weekly correlated

(relatively independent), this benefits us when we build and

train the model in the future work. The Kendall’s correlation

defines as the below, know that we have two variables m,n.

τm,n =
(# of concordant pairs)− (# of disconcordant pairs)

N(N − 1)/2

Where N is the number of observations of the two variables

that we want to compute the correlation. Concordant pairs

(m1, n1), (m2, n2) are pairs of values in which ranks coincide:

m1 < m2 and n1 < n2 or m1 > n2 and n1 > n2. Other-

wise, disconcordant pairs. The denominator is the number of

possible combinations of two variables.

C. Method

After we determined the objectives (predict the number

of rentals and returns) and the category of machine-learning

problem that may be mapped to (supervised regression), we

propose a stage-wise method Boosting Gradient Regression

(BGR)[22][23], which is a member of ensemble family. The

choice is made based on the characteristics of the dataset:

TABLE I
FEATURES TABLE

Feature Type Annotation

StationId int
identify the different

stations

Year int specify the years

Month int specify the months

Day int specify the days

Hour int specify the hours

DayOfWeek int specify the weekday

Season int specify the season

AnnualCustomerCount int
number of

annual-subscription
customers

OccasionalCustomerCount int
number of

temporal-usage customers

Temperature int
media degree per hour of

the corresponding day

Precipitation float
media precipitation per

hour of the corresponding
day

Wind int
media wind velocity per

hour of the corresponding
day

Humidity int
media humidity per hour
of the corresponding day

EmptySlotCount int
number of empty slots at

the previous hour

AvailableBikeCount int
number of available bikes

at the previous hour

PreviousRelease int
number of rentals

occurred in the previous
hour

PreviousReturn int
number of returns

occurred in the previous
hour

the variables stay in different magnitudes, and some are the

integer, some are the float. If we use the linear models,

the transform is supposed to apply on the variables, usually

referring to the data-reduction. In some cases, it is not trivial.

BGR may take care of these problems without the need for

any manipulation. BGR sets off by creating a weak learner in

every stage, and add it to the learner pool that keeps increasing

after every iteration. Note that many models can form the weak

leaner; it is just a broad concept. So in theory, a well-coded

gradient boosting module would allow you to plug in various

classes of weak learners at your disposal. Here it refers to

the decision tree. During every stage, the weak learner is the

winner that may minimally reduce the residual errors, selecting

from a set of different trees that are built according to various

combinations of features, sometimes even a stumble (tree with

only one node). Besides, the construction of weak leaner may

control by adjusting the maximal depth of trees or the number

of nodes for every tree; the residual error function can be

least square[24], absolute square, Huber(combination of least

square and absolute square)[24] and so on. The absolute loss

function has its disadvantage, and it is not differentiable when
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it comes to zero, whereas, the least square loss function is

sensitive to the outliers. Huber takes the advantages of them;

when the difference between predict value and the real value is

small, the function is quadratic, rather it is linear for the large

value. We use Huber as the loss function, and it is defined as:

Lδ(y, γ) =

{
1
2 (y − γ)2, for|y − γ| ≤ δ

δ|y − γ| − 1
2δ

2, otherwise

Where γ = f(x), δ is hyperparameter, we need to pre-set.
The main algorithm describes as the followings:

• Firstly, we start the model by the first weak learner, it

formalizes as F0(x), we initialize it with the mean of the

training target values (the case when m = 0).

Fm(x) =

⎧⎨
⎩
argminγ

∑n
i=1 L(yi, γ), for m �= 0

1
n

n∑
i=1

yi, for m = 0

Where L(yi, γ) is Huber error function, defined above.

• For iteration m from 1 to M (the case m �= 0):

– F (xi) in iteration m defines as

Fm(xi) = Fm−1(xi) + γimhm(xi)

– Residual errors after iteration m is defined as the

difference between the real values y and the predicted

values Fm(x) generated by the collection of learners

in stage m:

em+1(xi) = y − Fm(xi)

– γim and hm(x) are computed separately by the first

and second order of loss function L.

γim = −[∂L(yi, F (xi))

∂F (xi)
]F (x)=Fm−1(x)

hm(x) = [
∂2L(yi, F (xi))

∂F (xi)2
]F (x)=Fm−1(x)

Fm−1(x): the collection of learners up to stage m-1.

γim: the learning size in stage m for sample data i.

hm(x): a new leaner generated in stage m.

em(x): the residual error.

Despite the performance, the BGR has many advantages

that make it outstanding among other approaches.

• It is not necessary to normalize or standardize the vari-

ables, and the algorithm enables the feature node splitting

automatically during the training process with the purpose

of minimizing the residual errors. The normalization is

not exclusively benefiting the result, e.g., SVM in some

cases it improves, in some cases, not [25].

• It may somewhat alleviate the overfit issues since in every

stage the tree is built shallow, in other words, it is a simple

tree made of few features.

• It may automatically handle the data missing problem,

knowing proper direction to traverse and adequate leaf

to sit. For the other methods, we have to deal with the

missing data before we implement the methods.

TABLE II
TO-PREDICT VARIABLES TABLE

Prediction Type Annotation

ReleaseCount int number of rentals occurred in the next hour

ReturnCount int number of returns occurred in the next hour

Fig. 2. Feature analysis: study the independence between the feature pairs.

IV. EMBEDDING THE PREDICTOR INTO THE SYSTEM

In the last section, the BGR algorithm is introduced, in this

section, we will briefly introduce how to add the predicting

function into the existed system and the interaction between

them. The core frame is shown in figure 3.

• Initially, the system automatically loads the predictors

(from the database) and feature vector (from different

sensors) into the RAM at the specific time according to

the requirements recorded on the configuration file. Since

the predictor is trained based on single station, the loading

model signal should clarify the corresponding model to

load. The parallel operation is possible, and we may

create multi-threads to deal with multiple requirements

at the same time. When we form the feature vector,

we should pay attention to the timing of collecting the

features related to the previous hour (the last four features

in table I).

• Consequently, the predictor outputs the to-forecast values

and feed them into another module (resources distribut-

ing) along with a reliability indicator to place the bikes

according to the potential needs. The indicator is com-

puted based on the records, implying how likely that the

predicted value may be correct.

• In the same time, the system collects the real values and

the feature vectors and saves them into the dataset for
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Fig. 3. workflow and the interaction between the predictor and the sensors,
database of the bike-sharing system.

the further training, which will occur after an interval to

track and update the underlying changes of the customers’

demands.

V. EXPERIMENT AND ANALYSIS

A. Measure Matrix

The performance is evaluated firstly by the average precision

of all bike stations, and then we look into the accuracy of every

single station. Assume that we have m stations to predict, every

station has n data samples to test (for the simplicity, actually

the number of data samples of every station is different). The

error for station t is:

Et =

n∑
i=1

(yti − y
′
ti)

2

n∑
i=1

y2ti

Therefore, the precision for station t is:

Pt = 1− Et

The average precision P of m stations is:

P =

m∑
s=1

Pi

m

B. Performance

To find the best-fit algorithm predicting the possible number

of rentals and returns, we tried the different methods. To

validate and demonstrate the performance, we compare the

average precision produced by BGR with SVM, LASSO,

RF, and ETR. GBR outperforms the other methods for both

release and returns predictor, shown in figure 4. For the release

predictor, the average precision of GBR is 75%, almost the

double of SVM, 10% higher than LASSO, 5% higher than

ETR. Here we applied both SVM with linear-kernel and radial-

basic-function (RBF) kernel, in our case they don’t show the

Fig. 4. Average release/return precision for different methods.

Fig. 5. Release precisions for all stations.

significant difference. Additionally, our result aligns with the

conclusion drawn by the other authors [26] that BGR has

the better outcome than RF and DT. The result generated by

the return predictor is similar to release predictor. The only

difference is that the precision of SVM is improved, and we

can tell the ensemble algorithms (GBR, RF, and ETR) seem to

be more robust, the accuracies of rental and return are almost

identical.

In figure 4 we illustrated the average precision of all 276

stations, in this series of the experiment we want to take a

closer inspection of the accuracy for every station, shown in

figure 5 and figure 6. The accuracies of all the station produced

by GBR for both rental and release predictors are marked by

the purple circles, hanging above the markers generated by the

different methods. It means that virtually the precision of every

station outraces the results of the other approaches. Notably,

there are few stations that the LASSO turns out to contribute

a better result. Therefore, we can use LASSO as a predictor

in those stations to further improve the performance.

VI. CONCLUSION

This paper thoroughly presents how to enable the machine-

learning algorithms to solve the real-life application. It starts

from introducing the background of the application and the
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Fig. 6. Return precisions for all stations.

problems, and then determining the objective that is imple-

mentable by the machine learning methods, searching the

best solver, and finally embedding it to upgrade the system.

We want to bridge the gap between the theories and the

applications by giving a practical case. The future work can be

carried out from three aspects. The first one is to forecast the

rentals and returns by building a classifier that can predict the

activities of the customers to strengthen the smart module.

The second one is to study the batch size for the further

training as the underlying needs of the customers may vary

over time, further training is necessary. Moreover, we can

make the dimensions of the feature vector scalable if we can

collect more useful variables from the external sensors in the

future, e.g., the event tracker, hence, the predictor may be

further empowered.
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